Contiki-NG
Loading...
Searching...
No Matches
bme280.c
Go to the documentation of this file.
1/*
2 * Copyright (c) 2015, Copyright Robert Olsson
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 * 1. Redistributions of source code must retain the above copyright
9 * notice, this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright
11 * notice, this list of conditions and the following disclaimer in the
12 * documentation and/or other materials provided with the distribution.
13 * 3. Neither the name of the Institute nor the names of its contributors
14 * may be used to endorse or promote products derived from this software
15 * without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE INSTITUTE AND CONTRIBUTORS ``AS IS'' AND
18 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 * ARE DISCLAIMED. IN NO EVENT SHALL THE INSTITUTE OR CONTRIBUTORS BE LIABLE
21 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
22 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
23 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
24 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
25 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
26 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
27 * SUCH DAMAGE.
28 *
29 * This file is part of the Contiki operating system.
30 *
31 *
32 * Author : Robert Olsson rolss@kth.se/robert@radio-sensors.com
33 * Created : 2016-09-14
34 */
35
36/**
37 * \file
38 * Basic functions for Bosch BME280 based on datasheet Rev 1.1
39 */
40
41#include "contiki.h"
42#include <string.h>
44#include "dev/sensor/bme280/bme280-arch.h"
45#include "lib/sensors.h"
46
47bme280_mea_t bme280_mea;
48
49static struct {
50 unsigned short dig_t1;
51 signed short dig_t2;
52 signed short dig_t3;
53 unsigned short dig_p1;
54 signed short dig_p2;
55 signed short dig_p3;
56 signed short dig_p4;
57 signed short dig_p5;
58 signed short dig_p6;
59 signed short dig_p7;
60 signed short dig_p8;
61 signed short dig_p9;
62 unsigned char dig_h1;
63 signed short dig_h2;
64 unsigned char dig_h3;
65 signed short dig_h4;
66 signed short dig_h5;
67 signed char dig_h6;
68 int32_t t_fine;
69 uint8_t mode;
70} bm;
71
72int32_t
73bme280_t_overscale100(int32_t ut)
74{
75 int32_t v1, v2, t;
76
77 v1 = ((((ut >> 3) - ((int32_t)bm.dig_t1 << 1))) *
78 ((int32_t)bm.dig_t2)) >> 11;
79
80 v2 = (((((ut >> 4) - ((int32_t)bm.dig_t1)) * ((ut >> 4) -
81 ((int32_t)bm.dig_t1))) >> 12) * ((int32_t)bm.dig_t3)) >> 14;
82
83 bm.t_fine = v1 + v2;
84 t = (bm.t_fine * 5 + 128) >> 8;
85 return t;
86}
87#ifdef BME280_32BIT
88static uint32_t
89bme280_p(int32_t up)
90{
91 int32_t v1, v2;
92 uint32_t p;
93
94 v1 = (((int32_t)bm.t_fine) >> 1) - (int32_t)64000;
95 v2 = (((v1 >> 2) * (v1 >> 2)) >> 11) * ((int32_t)bm.dig_p6);
96 v2 = v2 + ((v1 * ((int32_t)bm.dig_p5)) << 1);
97 v2 = (v2 >> 2) + (((int32_t)bm.dig_p4) << 16);
98
99 v1 = (((bm.dig_p3 * (((v1 >> 2) * (v1 >> 2)) >> 13)) >> 3) +
100 ((((int32_t)bm.dig_p2) * v1) >> 1)) >> 18;
101
102 v1 = ((((32768 + v1)) * ((int32_t)bm.dig_p1)) >> 15);
103
104 if(v1 == 0) {
105 return 0;
106 }
107
108 p = (((uint32_t)(((int32_t)1048576) - up) - (v2 >> 12))) * 3125;
109
110 if(p < 0x80000000) {
111 p = (p << 1) / ((uint32_t)v1);
112 } else {
113 p = (p / (uint32_t)v1) * 2;
114 }
115
116 v1 = (((int32_t)bm.dig_p9) * ((int32_t)(((p >> 3) * (p >> 3)) >> 13))) >> 12;
117 v2 = (((int32_t)(p >> 2)) * ((int32_t)bm.dig_p8)) >> 13;
118 p = (uint32_t)((int32_t)p + ((v1 + v2 + bm.dig_p7) >> 4));
119 return p;
120}
121#else
122
123static uint32_t
124bme280_p_overscale256(int32_t up)
125{
126 int64_t v1, v2, p;
127
128 v1 = ((int64_t)bm.t_fine) - 128000;
129 v2 = v1 * v1 * (int64_t)bm.dig_p6;
130 v2 = v2 + ((v1 * (int64_t)bm.dig_p5) << 17);
131 v2 = v2 + (((int64_t)bm.dig_p4) << 35);
132 v1 = ((v1 * v1 * (int64_t)bm.dig_p3) >> 8) + ((v1 * (int64_t)bm.dig_p2) << 12);
133 v1 = (((((int64_t)1) << 47) + v1)) * ((int64_t)bm.dig_p1) >> 33;
134
135 if(v1 == 0) {
136 return 0;
137 }
138
139 p = 1048576 - up;
140 p = (((p << 31) - v2) * 3125) / v1;
141 v1 = (((int64_t)bm.dig_p9) * (p >> 13) * (p >> 13)) >> 25;
142 v2 = (((int64_t)bm.dig_p8) * p) >> 19;
143 p = (((p + v1 + v2) >> 8) + (((int64_t)bm.dig_p7) << 4));
144 return (uint32_t)p;
145}
146#endif
147
148static uint32_t
149bme280_h_overscale1024(int32_t uh)
150{
151 int32_t v1;
152 v1 = (bm.t_fine - ((int32_t)76800));
153 v1 = (((((uh << 14) - (((int32_t)bm.dig_h4) << 20) - (((int32_t)bm.dig_h5) * v1)) + ((int32_t)16384)) >> 15)
154 * (((((((v1 * ((int32_t)bm.dig_h6)) >> 10) * (((v1 * ((int32_t)bm.dig_h3)) >> 11) + ((int32_t)32768)))
155 >> 10) + ((int32_t)2097152)) * ((int32_t)bm.dig_h2) + 8192) >> 14));
156 v1 = (v1 - (((((v1 >> 15) * (v1 >> 15)) >> 7) * ((int32_t)bm.dig_h1)) >> 4));
157 v1 = (v1 < 0 ? 0 : v1);
158 v1 = (v1 > 419430400 ? 419430400 : v1);
159 return (uint32_t)(v1 >> 12);
160}
161uint8_t
162bme280_init(uint8_t mode)
163{
164 uint16_t i;
165 uint8_t buf[26];
166
167 bme280_arch_i2c_init();
168
169 /* Do not mess with other chips */
170 bme280_arch_i2c_read_mem(BME280_ADDR, 0xD0, buf, 1);
171 if(buf[0] != BME280_CHIP_ID) {
172 return 0;
173 }
174
175 bme280_arch_i2c_write_mem(BME280_ADDR, BME280_CNTL_RESET, 0xB6);
176
177 for(i = 0; i < BME280_MAX_WAIT; i++) {
178 clock_delay_usec(1000);
179 }
180
181 memset(buf, 0, sizeof(buf));
182
183 /* Burst read of all calibration part 1 */
184 bme280_arch_i2c_read_mem(BME280_ADDR, BME280_DIG_T1_ADDR, buf, sizeof(buf));
185 bm.dig_t1 = ((uint16_t)buf[1] << 8) | (uint16_t)buf[0];
186 bm.dig_t2 = ((int16_t)buf[3] << 8) | (uint16_t)buf[2];
187 bm.dig_t3 = ((int16_t)buf[5] << 8) | (uint16_t)buf[4];
188 bm.dig_p1 = ((uint16_t)buf[7] << 8) | (uint16_t)buf[6];
189 bm.dig_p2 = ((int16_t)buf[9] << 8) | (uint16_t)buf[8];
190 bm.dig_p3 = ((int16_t)buf[11] << 8) | (uint16_t)buf[10];
191 bm.dig_p4 = ((int16_t)buf[13] << 8) | (uint16_t)buf[12];
192 bm.dig_p5 = ((int16_t)buf[15] << 8) | (uint16_t)buf[14];
193 bm.dig_p6 = ((int16_t)buf[17] << 8) | (uint16_t)buf[16];
194 bm.dig_p7 = ((int16_t)buf[19] << 8) | (uint16_t)buf[18];
195 bm.dig_p8 = ((int16_t)buf[21] << 8) | (uint16_t)buf[20];
196 bm.dig_p9 = ((int16_t)buf[23] << 8) | (uint16_t)buf[22];
197 /* A0 not used */
198 bm.dig_h1 = (unsigned char)buf[25];
199
200 /* Burst read of all calibration part 2 */
201 bme280_arch_i2c_read_mem(BME280_ADDR, BME280_DIG_H2_ADDR, buf, 8);
202 bm.dig_h2 = ((int16_t)buf[1] << 8) | (uint16_t)buf[0];
203 bm.dig_h3 = (unsigned char)buf[2];
204 bm.dig_h4 = ((int16_t)buf[3] << 4) | (((uint16_t)buf[4]) & 0xF);
205 bm.dig_h5 = ((int16_t)buf[6] << 4) | (((uint16_t)buf[5]) & 0xF);
206 bm.dig_h6 = (unsigned char)buf[7];
207
208 bm.mode = mode;
209 return 1;
210}
211void
212bme280_read(uint8_t mode)
213{
214 int32_t ut, uh, up;
215 uint8_t buf[8], sleep;
216 uint16_t i;
217 memset(buf, 0, sizeof(buf));
218
219 /* Are we initilized and in the right mode? */
220 if(mode == BME280_MODE_NONE || mode != bm.mode) {
221 return;
222 }
223
224 ut = uh = up = 0;
225
226 /* Weather mode. See sectiom 3.5 Datasheet */
227 if(mode == BME280_MODE_WEATHER) {
228 /* Humidity oversampling *1 */
229 bme280_arch_i2c_write_mem(BME280_ADDR, BME280_CNTL_HUM, 0x01);
230
231 /* 00100111 0x27 oversampling *1 for t and p plus normal mode */
232 /* 0.5 ms -- no filter -- no SPI */
233 bme280_arch_i2c_write_mem(BME280_ADDR, BME280_CONTROL, 0x00);
234
235 /* 00100110 0x26 oversampling *1 for t and p plus forced mode */
236 /* Trigger measurement needed for every time in forced mode */
237 bme280_arch_i2c_write_mem(BME280_ADDR, BME280_CNTL_MEAS, 0x26);
238 /* Wait to get into sleep mode == measurement done */
239 for(i = 0; i < BME280_MAX_WAIT; i++) {
240 bme280_arch_i2c_read_mem(BME280_ADDR, BME280_CNTL_MEAS, &sleep, 1);
241 sleep = sleep& 0x03;
242 if(sleep== 0) {
243 break;
244 } else {
245 clock_delay_usec(1000);
246 }
247 }
248 if(i == BME280_MAX_WAIT) {
249 return; /* error wait*/
250 }
251 } else { /* if(mode == BME280_MODE_WEATHER) */
252 return; /* error mode*/
253 }
254
255 /* Burst read of all measurements */
256 bme280_arch_i2c_read_mem(BME280_ADDR, BME280_PRESS, buf, 8);
257 ut = (uint32_t)(buf[3]) << 12 | (uint32_t)(buf[4]) << 4 | (uint32_t)buf[5] >> 4;
258 up = (uint32_t)(buf[0]) << 12 | (uint32_t)(buf[1]) << 4 | (uint32_t)buf[2] >> 4;
259 uh = (uint32_t)(buf[6]) << 8 | (uint32_t)buf[7];
260
261 bme280_mea.t_overscale100 = bme280_t_overscale100(ut);
262 bme280_mea.h_overscale1024 = bme280_h_overscale1024(uh);
263#ifdef BME280_64BIT
264 bme280_mea.p_overscale256 = bme280_p_overscale256(up);
265#else
266 bme280_mea.p = bme280_p(up);
267#endif
268
269#if TEST
270 printf("T_BME280=%5.2f", (double)bme280_mea.t_overscale100 / 100.);
271 printf(" RH_BME280=%5.2f ", (double)bme280_mea.h_overscale1024 / 1024.);
272#ifdef BME280_64BIT
273 printf(" P_BME280=%5.2f\n", (double)bme280_mea.p_overscale256 / 256.);
274#else
275 printf(" P_BME280=%5.2f\n", (double)bme280_mea.p);
276#endif
277#endif
278}
Definitions for the Bosch BME280 based on datasheet Rev 1.1.
void clock_delay_usec(uint16_t dt)
Delay a given number of microseconds.
Definition clock.c:150